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Abstract-The surface tension gradient driven fluid flow that occurs during laser melting has been studied. 
The steady laminar thermocapillary motion in a cylindrical cavity has been analyzed numerically for 
0.01 < Pr < 20, 50 < Re, < 35000, 0.01 < A < 10 without the inclusion of buoyancy effects. The study 
consists of scale analysis and numerical simulations. For a fixed Prandtl number the average free surface 
Nusselt number, side wall Nusselt number, bottom Nusselt number and maximum stream function are 
proportional to Rez”, Re,4!‘, ReTY, and Ret 2*7, respectively. The numerical results are qualitatively verified 
by the scale analysis. The convection in the melt modifies the isotherms in the melt at high surface tension 
Reynolds number and Marangoni number. In addition, surface deflections are computed using a domain 
perturbation for small capillary number. It is shown that the degree of the free-surface deformation for 

the leading-order solution varies strongly with the surface tension Reynolds number. 

1. INTRODUCTION 

THE PRESENCE of a surface-tension gradient at the free 
surface between a liquid and a gas phase would influ- 

ence the motion of these media. This induces fluid 
motion which is sometimes termed Marangoni con- 
vection or thermocapillary flow (for example, Yih [l] 
and Pearson [2]). The subject of thermocapillary con- 

vection has long been an area of interest due to com- 
plex flow patterns and practical applications. Studies 
on this subject range from the earlier fundamental 

understanding of Pearson [2] and Nield [3] to the 
more recent ones related to the materials processing 
problems such as crystal growth techniques (Chun 
[4], Schwabe and Scharmann [5]), welding and laser 

surface treatment (Kou and Sun [6]). 
Bergman and Ramadhyani [7] simulated a con- 

vective flow in a square cavity driven by simultaneous 

buoyancy and thermocapillary effects. Usually, in the 
earth-gravity environment, such flows are over- 
shadowed by natural conveclion (or forced con- 
vection), but at microgravity conditions, or when the 
dimension of the fluid system is small, their influences 
could be significant (see, for example, Bauer [S], Diezz 
[9], and Croll et al. [lo]). An excellent numerical study 

of thermocapillary convection in square cavities was 
conducted by Zebib et al. [ll]. They analyzed the 
structure of the flow by invoking ideas from boundary 
layer theory. In addition, the interface shape was cal- 
culated using a domain perturbation for small capil- 
lary numbers. Sen and Davis [12] reported an asymp- 

t Author to whom correspondence should be addressed. 

totic solution of a steady thermocapillary flow in a 
shallow slot in which the interface shape was not flat. 
Chen et al. [13] employed a finite-difference method 

with boundary-fitted technique to solve a steady 
thermocapillary free surface problem in a rectangular 
physical domain. 

Although the thermocapillary flow induced by the 
temperature difference between the two vertical end 
walls in the rectangular cavity has been investigated, 
no effort has been made to study thermocapillary 
motion in an axisymmetric cylindrical cavity with 

free top that is heated along its top surface. The source 
of heat is modeled as a Gaussian distribution which 
is widely used in the laser surface working literature. 
In this paper the steady laminar thermocapillary 
motion in a cylindrical cavity with different aspect 
ratios (height to diameter) will be analyzed by a 
finite-difference procedure for 0.01 < Pr < 20, 

50 < Re, < 35000, 0.01 < A ,< 10. Moreover, in 
order to characterize the nature of stronger con- 
vection flows, the scale analysis is used to infer the 

boundary layer structure in the cavity for large but 
finite values of the surface tension Reynolds and 
Marangoni numbers. In addition, surface deflections 

are computed using domain perturbation for small 
capillary number (Ca = A%i. A + 0). It will be 
shown that, in some cases, thermocapillary flow can 
have remarkably strong influence on the flow field, 
temperature distribution. rate of heat transfer, and 
surface deflections in the cavity. Furthermore, the 
effect of the cylindrical geometry will be presented and 
compared with the previous investigations associated 
with a square cavity. 
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NOMENCLATURE 

aspect ratio, W/D 
capillary number, yAOA/cr,, 

0( 1) for capillary number, G/A’ 

diameter of cylinder [m] 
deflection of the free surface [m] 
thickness of the free surface boundary 

layer [m] 

TO 
AT 

U‘ 

u 

dimensionless deflection of the free surface, V 
11: w W 
thermal conductivity [W mm ’ K ‘1 % 
thickness of the vertical side boundary 

temperature of rigid wall [K] 
characteristic temperature difference. 

&,lk WI 
characteristic velocity of fluid, 

(da/dT)A(AT/p) [m s ‘I 
dimensionless velocity in 2 direction, 

uiU,A 

dimensionless velocity in r direction, I>!U, 
height of the cavity [m] 
dimensionless axial coordinate, z/W. 

layer [m] 
Ma Marangoni number, Rr, Pr 

NM local Nusselt number 
Nu mean Nusselt number, q” W/kAO 

NLQ, mean Nusselt number of bottom wall 
Nu, mean Nusselt number of side wall 
Nu, mean Nusselt number of free surface 

Pr Prandtl number, V/U 
P dimensionless pressure, p/(pU,D/ W*) 

q<, average heat flux applied at the free surface 
[W m ‘1 

q(R) dimensionless heat flux distribution 
applied at the free surface, 

Bexp(-aR’)l(l-exp(-p)) 

Greek symbols 
C! thermal diffusivity [m’ s ‘1 

7’ surface tension coefficient [N m ‘1 
6, thickness of the boundary layer [m] 
0 dimensionless temperature, (T- T,)/AT 
AH relative temperature with respect to the 

temperature To [K] 

L’ dynamic viscosity [N s mm- ‘1 
L’ kinematic viscosity [m’ s ‘1 

CL> an average surface tension over a range of 
radius of cylinder [N mm ‘1 

curvature of free surface [m ‘1 
stream function [m’ s- ‘I. 

q, dimensionless heat flux distribution 

applied at the free surface, q(R)/qo Subscripts 
R dimensionless radial coordinate, r/D C center of cavity 

R” radius of cylinder [m] 0 leading order solution 
Re, surface tension Reynolds number, pLl, W/p I second-order solution. 

2. MATHEMATICAL FORMULATION following assumptions were made : 
The simplified physical domain (Fig. I) consists 

of a cylindrical cavity of diameter D and height W 

containing an incompressible, Newtonian liquid. The 
top horizontal boundary is a free surface exposure to 
a passive gas. The rigid, cold side wall and bottom wall 

are kept at a constant temperature T,,. In addition, the 

FIG. I Physical model of the present study 

I. The system is steady, incompressible, laminar, 
axisymmetric, with constant properties and without 
viscous dissipation. 

2. The solid-liquid interface shape (side wall) is at 

the melting point T,. 
3. The buoyancy effect is ignored (see, for instance. 

Srinivasan and Basu [ 141). 
4. The thermal boundary condition on the free 

surface is modeled as a Gaussian distribution q(R) = 

(B/l -cxp (-fl))exp (-_PR*) with fl = 5.0. 

According to the above assumptions and intro- 
ducing the dimensionless variables, the governing 
equations can be written in following form : 

(Ia) 
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(14 

The boundary conditions in dimensionless form can 
be given as follows : 

CJ=V=Q=O; at R=0.5, O<Z<I (24 

U= V=Q=O; at Z=O, O<R<0.5 (2b) 

U=g=g=O; at R=O, O<Z<l (2c) 

av a0 _-_. u=o, aZ-aR' 

$= q(R)=- P 
1 -ev(-B) 

exp (-BR*) 

at Z= 1, O<R<0.5. (2d) 

3. SCALING AND STRUCTURE 

Since the key to the correct correlation of seemingly 
complicated trends such as convection melting is the 
identification of the proper scales of the phenomenon, 
the scale analysis is made to infer the boundary layer 

structure in the cylindrical cavity. According to the 
flow field of the present computation, the phenom- 

enon consists of a sequence of four regimes : (a) free 
surface boundary layer, (b) core region, (c) corner 
region and, finally, (d) side wall boundary layer. 

Due to the present driving force of the fluid mainly 

caused by the shear stress of the free surface, it would 
generate a main vortex near the upper corner at the 

side wall. This main vortex would enhance the secon- 
dary vortex at the lower corner as the surface tension 
Reynolds number increases until the vertical thermal 

layer at the side wall is developed completely. Thus 
a picture of the boundary layer structure might be 
developed as shown in Table 1. In addition, in order 
to simplify this scale analysis the necessary assump- 

tions are made : (1) the main driving force of the fluid 
is caused by the shear stress of the free surface; 
(2) the surface tension Reynolds number and Maran- 
goni number are large but finite values (5000-35 000 

or so); (3) the how is laminar, two-dimensional and 
axisymmetric; (4) the properties are all constant; 
(5) any particle on the free surface will remain on the 
free surface permanently; (6) the interface between 

the two immiscible fluids is sufficiently clean so as to 
avoid the convective instabilities. 

Considering the conservation of mass, momentum, 

and energy in the thermal boundary region (R z O(I), 
Z z 6,) at free surface, where the driving force caused 
by the shear stress is strongly felt, the following shear 
stress balance is therefore established, (aV/l?Z) = 

-(80/13R). The energy equation in the free surface 
layer expresses a balance between convection and con- 
duction, namely, 

Regions 

Table 1. The scales of the relevant boundary layer regions 

V V * NU 

Present Zcbib et Present Zebib et Present Zebib et Present Rectangular 
study al. [I I] study al. [l l] study al. [l l] study geometry 

Free surface layer 
Core region 
Corner region 
Side wall layer 

Note : NA stands for ‘not available’ 

Sketch of the important boundary layer regions 

O(Re;,l 

present geometry rectangular geometry 



Re, ’ 
AU 
$ (3) 

i-____---2 s._ ___.v_~~ .: 
~‘oilrccllon ~~n~~~i~~l~ 

From the conservation of mass in the same region, 

that is. (V/l) = (U/S.,), the two convection terms in 
equation (3) arc of order Z~(A@ji%,). Thus, the energy 
balance becomes ~(AU~~~ % Rr; ‘(Afi/d$). Here, 
a modified thermal boundary layer thickness 

&(R,,‘&,-) “’ was proposed to replace the initial &,.. 
This is due to the curvature effect of the present physi- 

cal geometry. Following Hsieh et ~11. [I 51 an ampli- 
fication factor (R,/S.,-) “’ was introduced and it was 
not derived from the mathematics. It solely depends 
on the present numerical data and phenomenologicai 

behavior. This substitution yields V = (Re, ‘!a+). 

Now, turning our attention to the shear stress balance 

(V/&r) % (Ao//), this results in V hc ii,. Hence, one 
may obtain (5,. = Rr, “‘. Furthermore. the horizontal 
velocity length scale becomes C’ z Re, ’ ‘. Finally, 

using the above energy balance, yields lJ z fit, 4r7. 
The conventional definition of stream function results 
in IJ * Re, 4”. Since the length scale of heat transfer 
coefficient is iilS,, the average Nusselt number on the 
fret surface can be written as 

In the core region, the driving force is caused by the 

shear stress on the free surface. The velocity must 
match between the core and the free surface layer. 
Since R, Z z 0( 1) in the core, and V x Rr>;- *” in the 
free surface layer, and from matching condition. the 

horizontal velocity length scale in the core region 
should be V % Re; ’ ‘. Using the conservation of mass 

in the core region, one may obtain Cr z Re; ‘~‘, and 
so. the stream function is $ % Re, ’ ‘. 

In the corner region, since the horizontal free sur- 
face flow turns in the corner region, the free surface 
velocity at U(R. 1) would drop sharply to zero. The 
flux of fluid in this region is determined by the cor- 

responding quantities in the free surface region. Thus, 
from the scaling of the free surface layer, one can find 
b’ = R(,, ::7. % = Re;’ ‘. Using the same analysis as 

equations (3) and (4) derived, these can result in 
R z RP; “?, II s U(1) and @ % Rr, “‘. For the side 

wall boundary layer, generally speaking, large vel- 
ocities are confined to the free surface layer and the 
cold corner region for the thermocapillary flow, these 
in turn drive a core circulation. The flux of fluid in the 
boundary layer of the rigid wall can be determined 
by the corresponding quantities in the corner region. 
Thus t’ = O( 1). Let us set the following scales in the 

thermal boundary layer region : R z tjr. % = W and 
(5, << W. According to the similar derivation, finally, 
one may conclude the following results I; = S., = 
Rc; ‘,‘. $ e Re_ w and xL( z Re,?:‘. 

The relevant scale of the present study and a com- 
parison with Zebib it crl. [II] was summarized in 

Table 1. In the following, these scaling laws and flow 
features will bc verified by means of a numerical simu- 
lation of the thermocapillary convection fluid flow. 

4. FREE-SURFACE DEFLECTION FOR SMALL 

CAPILLARY NUMBER Ca = CaA3 

The capillary number Ccl (which is a measure of the 
free surface deformation) in this study tends to be 
zero so that the free surface can be assumed to remain 
flat at teading order. For small capillary number, the 

surface deflection due to normal stresses generated by 
the flow is generally small, thus the formulation of the 
free-surface location given in the following may be 
obtained using a perturbation method. 

In the derivation, following the procedure by Sen and 
Davis 1121 for a square cavity, the limits of ,4 -+ 0 and 
Cu = CaA” are taken. The first-order correction for 

C)(A) to the surface deflection is then 

dZH, 
-PHI l=-np. 

dR’ dRR o 

Considering the boundary conditions, the first-order 
correction to the surface deflection must satisfy 

dH! 
H,(R)I,,,,,, = 0, dR _~ = 0 

I/< 0 

I 
0. J 

and RH,(R)dR = 0. (7) 
0 

Equation (7) stands for the contact-line condition of 
the free surface for a fixed location, the axisym- 
metricity and an additional constraint on H,(R) from 
global continuity, respectively. Thus H,(R) can be 

determined to O(G) by solving equations (6) and (7) 
once P,, has been found. 

5. NUMERICAL COMPUTATION 

The SIMPLE (Semi Implicit Method for Pressure 
Linked Equation) method described by Patankar [16] 
with a slight modification will be applied to solve the 
aforementioned simultaneous differential equations 
(Ia)-( In this regard the calculation domain is 
subdivided into a number of rectangular control vol- 
umes. The governing differential equations are inte- 
grated over each control volume to obtain the finite- 
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difference equations involving variables U, V, P, and 
0. Equations (la)-(ld) can be rewritten in the con- 
servative form 

where the first two terms on the LHS of equation (8) 
are the convection terms, the last two terms on the 
LHS of equation (8) are the diffusion terms, and the 
term on the RHS is the source term. The dependent 
variable Q, stands for a variety of different quantities. 
Besides, I’,, (or I,) and S, are specific to a par- 
ticular meaning of cft. Line inversion iteration with a 
relaxation value of 0.5 for velocity terms and 0.8 for 
the pressure correction term were used to facilitate 
calculation. A variable @ is said to have converged if 
the following criterion is satisfied for al1 grid points 

t&J? : 

where n stands for the nth iteration and E was set to 
lO-5. 

A nonunifo~ scheme with an exponential grid gen- 
eration was used so that the meshes graded toward 
the side and bottom walls and toward the free surface. 
The grid size effect has been examined by comparing 
the results obtained with various different nonuniform 
grid systems. The solution can be confirmed by two 
measures which are invariant to mesh refinement and 
giobal heat conservation. Since no heat is lost from 
either the free surface at Z = 1 or the side (or bottom) 
wall, the Nusselt number must be satisfied for the 
exact solution. The computations with three grid sch- 
emes (21 x41, 31 x61 and 41 x81) yielded almost 
identical results (only a 0.3% change in maximum 
stream function and less than 0.5% for the average 
Nusselt number), and it coincides energy balance 
within 0.2%. In addition, details about the grid influ- 
ence on the main characteristics of the flow and heat 
transfer (the veiocity and temperature dist~butions at 
the free surface) are computed with three different 
grids shown in Fig. 2. The coarse 21 x 41 (horizontal 
by vertical) grid with the smallest size of 0.0063 was 
not adequate. The 41 x 81 grid with the smahest spac- 
ing of 0.0017 was considered to be acceptable for both 
cases. For the surface velocity distribution, it has a 
spike near the cold wall due to thermocapillary flow 
driven by a sharp temperature gradient in that region. 
As discussed by Chen 1171, an accurate numerical 
scheme with a very fine grid system is needed to resolve 
the cold corner region accurately at high Ma. At 
Ma > 40000 in the present work the corner region is 
not accuratefy resolved by 41 x 8 1 system and the peak 
vaiue would increase with a finer grid. This value 
(Ma = 40000) is different from the result (Ma = 

0.3 , 0.15 

0.25 0.12 

g 0.2 

e 
0.09 

- - - 

E OJ5 

21x41 

- B 31x61 0.06 
0.1 4*?&*1 

0.05 0.03 

0 0 

0 
8 
7 
9 
a 

f 

0 0.1 0.2 0.3 0.4 0.5 

r/D 

FIG. 2. Surface velocity and temperature distributions com- 
puted with various grid systems (Pr = 1.0, Re, = 10 000, 

A = 1.0). 

7000) discussed by Kamotani and Platt [IS]. This 
difference may be due to the curvature effect of present 
cylindrical geometry. Furthermore, it is found that no 
convergent solution can be obtained for 41 x 81 grid 
system at Ma > 1 x lo7 and it presents nonmonotonic 
dependence on the Marangoni number for Pr G N 15. 
This is slightly in agreement with the results discussed 
by Carpenter and Homsy [19] due to different physical 
geometry. The nonuniform 41 x 81 grid is adopted for 
the genera1 case of present numerical computation. 
All computing details are shown in Table 2. 

6. RESULTS AND DISCUSSION 

In Table 2, the results of the present study are 
compared with the previous investigations of the 
thermocapillary-driven convection. This table was 
applied to provide a basis for the assessment of the 
various methods and results calculated. From the pre- 
vious studies of the thermocapillary-driven convec- 
tion, it is found that the thermocapillary flows are 
governed by four parameters, Re,, A [aspect ratio), 
G and Pr (Ma = Re,Prj. This can also be seen 
from equations (la)-(ld) and (6). The numerical 
results are presented herein for 0.01 < Pr < 20, 
50<Re,<35000, O.Ol<A<lO, lO<C~<25 
(Pr = 0.1 : typical molten metals like iron, Pr = 1 : 
substances like chloride, and Pr = 20: typical non- 
metals like silicon). The following representative 
results were extracted from the original data to illus- 
trate this surface tension-driven fluid flow. 

6.1. Temperature andflowjelds 
Figures 3(a)-(d) show the isotherm patterns (left) 

and streamline patterns (right) with Pr = 1 for surface 
tension Reynolds numbers of 500, 2000, 5000 and 
10 000, respectively. Due to the resolution of the com- 
puter plot, several streamlines shown have a little bit 
of overlap in certain portions in Fig. 3 which is not 
the actual condition. In Figs. 3(a)-(d) (right), the flow 
patterns exist as two vortices in half of the cavity for 
present study, one located in the clockwise (CW) at 
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FIG. 3. Isotherms (left) and streamlines (right) for (a) Re, = 500, (b) Re, = 2000, (c) Re,, = 5000, 
(d) Re, = 10000. 

the upper domain, other located in the counter-clock- 

wise (CCW) at the lower domain. The CW vortex 
stands for the stream function of positive value. On 
the contrary, the CCW vortex expresses the stream 
function of the negative value. It is found that the 
vertical jet driven by surface tension in the boundary- 
layer region is accelerated downward on the right side 
and leftward simultaneously and discharges into a 
pool of the nearly isothermal trapped fluid. Mean- 
while, the fluid jet is decelerated and carries the sec- 

ondary vortex at the corner of the bottom up to the 
half height of the cavity. There, the fluid loses much 
of its momentum before smoothly rounding the lower 
left-hand corner of the major cell. Then, the hot fluids 
near the center of the cavity are moved upward due 
to the action of the surface tension. On the other 
hand, when the stronger CW vortex loses much of its 
momentum, it causes another fluid jet near the CW 

vortex at the lower domain accelerated leftward and 
downward simultaneously, and finally, discharges 
into another pool of the nearly isothermal trapped 
fluid. As the flow jet approaches the bottom surface 
gradually, these fluids are decelerated. Then, due to 
the action of the stronger CW vortex, it is carried 
to turn rightward and upward simultaneously. These 
motions are continuous and repeated. The secondary, 

weaker CCW vortex is therefore formed. Moreover, 
it is also found that the flow is clearly driven by the 
surface tension and the flow consists of a major cell, 
accompanied by a secondary cell at the lower domain. 

This phenomenon becomes more and more obvious 
as the surface tension Reynolds number increases. 
When the surface tension Reynolds number is 500 
(Fig. 3(a)), one cell fills the lower corner of the cavity. 

If the surface tension Reynolds number reaches 2000 
(Fig. 3(b)), the secondary cell has occupied the bottom 
of the cavity. This behavior persists until the surface 
tension Reynolds number is 10000 (Fig. 3(d)) at 
which the secondary cell at the bottom of the cavity 
becomes the same size as the major cell at the top of 

the cavity. However, there is a rapid change for both 
size and strength in the flow pattern as Re, increased 
from 500 to 5000 (from Fig. 3(a) to (c)). No sub- 
stantial change from 5000 to 10000 (Fig. 3(c) to (d)) 
was noted. This is because the major vortex moves 
these fluids near the corner of the bottom to yield the 
secondary vortex at early stage (Re, < 500). When 
the minor CCW vortex is formed and since the drag 
force of the stronger CW vortex in the upper domain 
is larger than another one in the lower domain, the 
CCW vortex is moved upward to the stronger CW 
vortex until the Re, reaches 5000. When Re, > 5000, 
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an increase of Re, would enhance the strength of the 
CCW vortex in the lower domain. This can be seen 
from the slow reduction of the J/ZnaX values of the 
stronger CW vortex, while the $,,,,” values of the CCW 

vortex increases quickly in this stage. Moreover, the 
free surface boundary layer is most evident in the 
upper section of height h’, where it is sandwiched 

by the most pronounced temperature difference AO. 
When Rr, increases, the major vortex becomes weaker 
as evidenced by the values of $m,,. Taking a closer 

examination of Fig. 3, it also indicates that the thick- 
ness of the free surface layer is almost constant 
(h’ s 0.10 at R = 0.25) as the surface tension 

Reynolds number increased from 500 to 10000. In 
addition, the variations of the thickness of the vertical 
layer for the surface tension Reynolds number from 
500 to 5000 can be also obtained (I’ =: O-0.16052 at 

Z = 0.5). However, it is found that the thickness 
of vertical layer has no substantial change for the sur- 

face tension Reynolds number from 5000 to 10000 
(I’ z 0.19021 at Z = 0.5). 

Figures 3(a)-(d) (left) show the isotherms cor- 

responding to the flows discussed in the preceding 
section for a fluid with Prandtl number Pr = 1 and 

surface tension Reynolds number ranged from 500 < 
Re, < 10 000. It is shown that, since the magnitude of 
the heat flux there is larger than anywhere else in the 
cavity, the isotherms near the top-center of the cavity 
are closer together. In addition, the Auid temperature 
at the center of the cavity surface is hotter than that 
of the side wall. Thus the surface tension of the fluid 
near the center of the cavity surface is lower than that 
near the side wall. Owing to the temperature gradient 

along the top surface, the~ocapiIlar~ forces cause a 
shear force in the interior fluid. Thus the fluid is drawn 
along the surface from the center to the side wall. This 
is also the reason that the major CW vortex is formed 
in the upper corner. Besides, it is found that the iso- 
rherms are packed closer to the side wall due to the 
two vortices existing at the top and bottom right cor- 

ners. This also explained the reason why very fine 
grids have to be clustered near the side wall and free 
surface to obtain reliable and accurate results. Con- 
versely, on the bottom waif the temperature gradients 

are milder and the fluid temperature near the bottom- 
center of the cavity is higher than that of the side wall. 

This is because the vortex is both weaker and CCW 
(these can be seen in Fig. 3 (right)). Similarly. the 
isotherms of T < 0.02 are very close to the vertical 
walls, which also look like being coincident with the 
vertical walls. It indicates that the surface layers are 
extremely thin. Further inspection of Fig. 3 (left). 
shows that when the surface tension Reynolds number 
increases, the three boundary layers (free surface 
boundary layer, side wall boundary layer. and bottom 
boundary layer (see Table 1)) become more distinct. 
This is due to the free surface boundary layer being 
most evident in the region of the height h’ where the 
core temperature is quite different from that of the 
free surface. The core is there thermally stratified. 

The stratification again is most pronounced 11~ the 
horizontal boundary layer of height It’. ~Lil.~hcrInorc. 
when the surface tension Reynolds number is less than 
2000 the isotherm patterns arc governed by coil- 

duction and, consequently. the thermocapil!ary con- 
vcction plays a minor role. As the surface tension 

Reynolds number reached 5000 the thermocapillary 
convection begins to affect the isotherm patterns near 
the side wall of the cavity (see Fig. 3(a) (left)). 

Figures 4(a)-(c) illustrate the isotherm patterns 
(left) and streamline patterns (right) with Re, = 2500 

for Pr = 0.1, I .O and 20, respectively, in which they 
show how the flow field responds to the diminishing 
temperature gradient over the central portion of the 
free surface as the Prandtl number is increased. It is 
also found that the strength in the Row pattern is 

decreased as Pr increased, and the isotherm patterns 
show a sensitive dependence on Pr. When Pr ,< I .O at 
this value of RP,, the isotherm patterns are mainly 

governed by conduction. As Pr = 20, the isotherm 
patterns are dominated by tl~ermo~apiff~~ry con- 
vection 

Isotherms and streamlines predicted for cavities 

with aspect ratios of 0.1, 0.5, 1.0, and 2.0 arc shown 

in Figs. 5(a))(d), respectively. As is evident, the sur- 
face tension-driven convection cell exists in all cases. 
The center of the surface tension cell rotation is at 
nearly the same vertical location. but the tim,, vafues 
arc enhanced as aspect rdti0 increased. However, the 
flow patterns located on the upper side of the cal- 
culation domain seem independent of the variation of 
aspect ratio. On the other hand, the thermal field is 
stratified fairly linearly in the vertical direction in most 
of the flow domain. Further inspection of Figs. S(a) 
(d) (left) reveals that the isotherm initially (at A = 0.1) 
behaves as stratified and, later, it becomes a plume 
displayed. This plume becomes more pronounced as 
the aspect ratio increased. 

6.2. Surface temperature and velocity pro$Zes 
Figure 6 shows how the dimensionless surface tem- 

perature and tangential velocity behave near the side 
wall for given Prandtl numbers and aspect ratios. The 
surface temperature distribution given in Fig. b(a) 
shows that it becomes more uniform in the entire 
region as the Pr increased and the aspect ratios 

decreased except in the cold corner region. This sur- 
face temperature distribution coincides with the 
Gaussian distribution of present heat source on the 
free surface. In addition, in Fig. 6(b), the surface 
velocity increases monotonicaIly from zero and drops 
back smoothly to zero in a small boundary layer next 
to the wall due to the effect of the endwall. It is 
therefore concluded that the influence of the vortex 
at the upper corner is quite important. The surface 
velocity profiles have one peak near the cold wall due 
to thermocapillary fiow driven by a sharp temperature 
gradient in that region, which increases in magnitude 
and is located further away from the wall as Prandtl 
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FIG. 4. Isotherms (left) and streamlines (right) for different Prandtl numbers with A = 1 and Re, = 2500, 
(a) Pr = 0.1, (b) Pr = 1 .O, (c) Pr = 20. 

numbers decreased and aspect ratios increased, but 

the peak value is slightly reduced at Pr less than 0.1. 

6.3. Heat transfer coeficient 
The local Nusselt numbers for the side wall and 

bottom wall are defined as follows : 

as R ae 

Nus = AZaR R=0,5 
Nub=-- 

A aZ.c, 

In Fig. 7(a) the local Nusselt number distributions 

on the side wall are shown. As expected, heat transfer 
at the lower half of the side of the cavity is affected 
only slightly by surface tension effects. In order to 
investigate the correlations between the heat transfer 
rate and the flow patterns in certain detail, part of the 
original drawing of the plot shown in Fig. 7(a) is 
enlarged. When the surface tension Reynolds number 

Re, < 10000, the Nusselt number decreased as Re, 
increased due to pure conduction at this stage as men- 
tioned earlier. When Re, > 10000, the Nusselt num- 
ber increased as Re, increased. This is because the 
thermocapillary convection begins to strongly influ- 
ence the isotherm patterns. At the region where the 
major vortex exists the Nusselt number is increased 
substantially. The maximum Nusselt number along 
the side wall occurred near the top surface. This is 

because of the surface tension effects, which are 
responsible for making the isotherms flat near the free 
surface as depicted earlier in Fig. 3, and this leads to 
rapid increases of Nu in the upper corner by surface 

tension-driven flow. 
Surface tension effects are, of course, most pro- 

nounced at the free surface and become less important 
near the lower half of the side of the cavity. Nusselt 
number distributions at the bottom of the cavity are 
shown in Fig. 7(b). It is found that an increase in 

heat transfer is accompanied by a decrease of surface 
tension Reynolds number. Maximum values of Nu 
occur at the quarter span of the bottom surface (mea- 
sured from the side wall) and they are associated 
with the secondary vortex fluid motion in the cavity. 
Although there is a vortex in the lower half region, 
the effect seems so small that the pure conduction was 
dominated. Therefore, the local Nusselt number does 
not exhibit a large change at the lower corner. Conse- 
quently, as also discussed earlier, the total heat trans- 
fer between the lower half side wall and bottom of the 
cavity is not significantly affected by thermocapillary- 
driven fluid flow. 

The average Nusselt number of the side wall is 
obtained by integration of the local Nu which is given 
in the following : 
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FIG. 5. Isotherms (left) and streamlines (right) for different aspect ratios with Pr = I.0 and Re, = 5000. 
(a) A = 0.1, (b) A = 0.5, (c) A = I .O, (d) A = 2.0. 
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These Nusselt numbers will be discussed with scale 

analysis in the next section. 

6.4. Comparison with numerical results and scale 
analysis 

The scale analysis imposed herein may now be used 

for verification of the present numerical results. In 
Fig. 8 is shown a plot of maximum stream function 
and the average Nusselt numbers of the side wall for 
the case with Pr = 1. It is found that the results of 

maximum stream function for large but finite Re, 
(Re, z 5&35 000) are in good agreement qualitatively 
(the trend is the slope of -2/7) with those based on 
the asymptotic scaling in the core region. Moreover, 
it is also shown that the average Nusselt numbers of 
side wall increases as Re, increases when Re, b 1000. 
The results calculated for large but finite Re, ( w 1 OOG 
35 000) fit the scaling law derived in Section 3 in the 
following functional form, Nu, z Re:“. 

different from the results $,,, z O(Re; ‘*‘) of the 
present study for the cylindrical geometry. The aver- 
age Nusselt numbers of the side wall were also differ- 

ent from the results obtained by Zebib et al. [I 1] (see 
Fig. 8). These may be due to curvature effects of the 

present study. In addition, the overall boundary 
layer behavior (the surface boundary layer, the side 
wall boundary layer and the bottom boundary layer) 
is found to be not completely developed until the 

surface tension Reynolds number reaches 5000. When 
the surface tension Re, > 5000, it is suggested that a 

schematic summary of the structure could be given 
for Pr = 1 as shown in Table 1. 

6.5. Free-surjbe deflections 
The free surface deflection was calculated using a 

domain perturbation for small capillary numbers. In 
order to compare the present results with the asymp- 
totic solution (Sen and Davis [12]) and the numerical 
solution (Chen et al. [13]), Table 3 was thus estab- 
lished. 

Following Zebib et al. [l 11, the maximum strength Table 3 shows the free surface deflections for the 
of the circulation would occur in the core region with height of a contact line fixed at Z = A with Re, = 1. 
the magnitude of $ z O(Re; I”‘) which is slightly Ma = 0.2, A = 0.2. The results for a shallow cavity 
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FIG. 6. (a) Surface temperature distributions, (b) surface 
velocity distributions for indicated Prandtl numbers and 

aspect ratios. 

with small capillary, Reynolds, and Marangoni num- 
bers are in good agreement with the previous asymp- 
totic results (Sen and Davis [12]) and numerical results 
(Chen et al. [13]). Moreover, this strongly indicates 

16 , I 

0.003 
N”b 

O.MJ2 

0.001 

0 
0 0.1 0.2 0.3 0.4 0.5 

r/D 

@) 

FIG. 7. Local Nusselt number distributions for various Re, 
with Pr = 1, (a) side wall, (b) bottom wall. 

f 
- : present scale analysis 
n . . : present numerical results 

vmax - RL?,-“~ . . . . . 
“.._.,, 

Re” 

FIG. 8. Variation of Re, vs tirndx and Nu,. 

that the free surface deflection at the leading order 
O(A) is almost equal to the integrated free surface 

deflection. Hence, for small capillary numbers the free 
surface deflection can be estimated using a domain 
perturbation rather than other methods to save much 
computational time for iterative process. 

The interfacial shape front distributions for various 
Reynolds numbers and capillary numbers are shown 

in Figs. 9(a) and (b), respectively. It is found that 

the free surface deflections have three peaks and two 
valleys. In addition, the free surface deflections have 

a minimum peak at the center and a maximum peak 
near the side wall. This is because the major vortex 
near the top corner decelerates the fluid from a certain 

maximum value to zero (also see Fig. 6). It can be 

seen that the leading order velocity and pressure deter- 
mine the free surface deflection from the inspection of 
equations (6) and (7). Hence, the fluid pressure is 
increased from a lower value to a maximum value 
near the side wall. This high pressure forces the fluid 
to rise upward. In Fig. 9(a), the peaks of the surface 
deflection near the corner move toward the side wall 

with an increase of Re,. This is because the rotating 
point of the major vortex moves toward the top corner 
gradually with an increase of Re, (see Fig. 3 (right)). 
Moreover, on further increase of Re, (see Fig. 9(a)) 
or further decrease of Ca (see Fig. 9(b)), the 
depression on the free surface becomes flatter due to 
the further increase of the surface tension. Further 
inspection of Fig. 9(a) shows that a boundary layer 
regime on the top was developed for Re, greater than 
about 5000. This can be also verified by the associated 
flow pattern shown an early plot in Fig. 3 (right). 

7. CONCLUSIONS 

Scale analysis, numerical simulation, and domain 
perturbation (A + 0, Ca = A3a) for surface deflec- 
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Table 3. Comparison with Sen and Davis [12], and Chen et ol. [13] for free-surface deflection subjected to Kc, 2 I, .&lcl :~ 0.1. 
n = 0.2 

__-_- ---_____ --..---- .--__~--__.__-___. _~~~~ ._ I. _..__~ 
Numerical solution at the Asymptotic solution at 
leading order for present the leading order by Numerical solution by 

study Sen and Davis [ 121 Chen et uI. [ 131 
_.__~ __ _.~~~ __..__~ ___-_.._ .~ 

ai min (AH,(R)) max CAH,(R)) min (AH,(x)) max (AH,(x)) min (H(x)) max (H(x)) 
---_~-- _____~_ ._._._~_ 

5 -O.Oli 0.011 -0.012 0.0!2 -m0.012 0.012 
IO -0.022 0.02s -0.024 0.024 - 0.024 0.024 
I5 -0.035 0.039 -0.036 0.036 -.. 0.038 0.037 
20 - 0.046 0.05 I - 0.048 0.048 - 0.053 0.050 

Comments H(R) = 1 + AH,(R) + D(A ‘) = k(r)! W H(s) = I +,4~~(.~~+~(‘4~) = h(.x)lW H(\-f = ir(r): W 

Physicat 
geometry 

tions were performed for the thcrmocapilkdry flow in 
a cylindrical cavity with free top during laser melting 
without the inclusion of buoyancy effect. Flow field, 
temperature distributions, heat transfer rates, asymp- 
totic scalings, and surface deflections observed in this 
study lead to the following conclusions : 

1. The temperature field is strongly influenced by 

convection if the surface tension Reynolds number is 
large (say, Re, 3 2000). 

o.o@Xm 

-0.oooo2 

-0.00#4 
-0.5 cl 0.5 

r/D 

2. Surface tension effects are, of course, most pro- 
nounced at the free surface and become less jnfluential 
near the lower half of the side of the cavity. 

3. As Re, reached 5000, the horizontal boundary 
layer has almost developed (h’ =: 0.10 at R = 0.25). 
The thertno~dpiliary convection begins to influence 
the isotherm patterns near the side wall. Furthermore, 
the major vortex continues to move the secondary 
vortex upward. The overall boundary layer behavior 
is not developed completely until Re, reached 5000 
(P = 0.1902 at Z = 0.5). Thereafter, the present 
numerical results are in good agreement with the 
asymptotic scalings, and a schematic summary of the 
structure is obtained which is shown in Table 1. The 
curvature effect due to the present geometry can 
reduce the influence of the thermocapillary flow. 

4. As Re, increases or Cu decreases, the surface 
deflection distorts further from the plane Z = ii. 

5. The leading order velocity and pressure gradients 
(mainly the pressure) determine the deflection of the 
liquid-gas inter-t&es. 

(a) 

o.m14 
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AH, o.wooo4 

O.OOOOO2 

0 
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